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Singular values and evenness symmetry
in random matrix theory
Abstract: Complex Hermitian random matrices with a unitary symmetry can be distinguished by a weight
function.When this is even, it is a known result that the distribution of the singular values canbedecomposed
as the superposition of two independent eigenvalue sequences distributed according to particular matrix
ensembles with chiral unitary symmetry. We give decompositions of the distribution of singular values, and
the decimation of the singular values – whereby only even, or odd, labels are observed – for real symmetric
random matrices with an orthogonal symmetry, and even weight. This requires further specifying the func-
tional form of the weight to one of three types – Gauss, symmetric Jacobi or Cauchy. Inter-relations between
gap probabilitieswith orthogonal and unitary symmetry follow as a corollary. TheGauss case has appeared in
a recent work of Bornemann and La Croix. The Cauchy case, when appropriately specialised and upon stere-
ographic projection, gives decompositions for the analogue of the singular values for the circular unitary and
circular orthogonal ensembles.
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1 Introduction
The ensembles of real symmetric random matrices OEn(w1) possessing an orthogonal symmetry and of
complex Hermitian randommatrices UEn(w2) possessing a unitary symmetry are specified by the eigenvalue
densities

pβ(x1, . . . , xn) = cn,β
n
∏
k=1

wβ(xk) ⋅ |∆(x1, . . . , xn)|β , β = 1, 2, (1.1)

with somenormalization constant cn,β, each xk restricted to the interval of support ofwβ(xk), and theVander-
monde determinant (note that ∆(ξ1, . . . , ξn) ≥ 0 if the arguments are increasingly ordered, ξ1 ≤ ⋅ ⋅ ⋅ ≤ ξn)

∆(ξ1, . . . , ξn) = det(

1 1 ⋅ ⋅ ⋅ 1
ξ1 ξ2 ⋅ ⋅ ⋅ ξn
...

...
...

ξ n−11 ξ n−12 ⋅ ⋅ ⋅ ξ n−1n

) = ∏
k>j

(ξk − ξj).
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Case w1(x) w2(x) ϖ

Gauss e−x2/2 e−x2 ∞
Jacobi (1 − x2)a (1 − x2)2a+1 1
Cauchy (1 + x2)−(n+a+1)/2 (1 + x2)−(n+a) ∞

Table 1. Admissible pairs of symmetric weights supported on (−ϖ, ϖ); a > −1.

Furthermore, relating to a chiral unitary symmetry, there is thematrix ensemble chUE(w2)withpositive eigen-
values distributed according to the density, see [8, p. 717],

pch(x1, . . . , xn) = cchn
n
∏
k=1

w2(xk) ⋅ ∆(x21, . . . , x
2
n)

2. (1.2)

As in the theory of orthogonal polynomials, the wβ(x) are referred to as weights. In fact, the ensembles are
often referred to by the name for the weights used in the theory of orthogonal polynomials. For example,
OEN(e−x

2/2) is referred to as the Gaussian orthogonal ensemble.
In this paper, as a unifying framework for examining eigenvalue properties under evenness symmetry,

introduced into random matrix theory in the works [8, 17] and further explored in the Gaussian case in the
recent works [3, 7], we study the structure of the singular values of ensembles OEn(w1) with even weights
w1 supported on (−ϖ, ϖ) as given in Table 1. The ensemble of singular values will be briefly denoted by
|OEn(w1)|, in keeping with the relationship between the eigenvalues and singular values – since the ensem-
bles are Hermitian, the singular values are the absolute value of the eigenvalues. Although defined according
to the probability density function (1.1), we remark that each ensemble implied by Table 1 can be realised in
terms of matrix ensembles defined by a distribution on the elements, see, e.g., [10, Chapters 1–3].

Central to our discussion is the operation of decimation, which if applied to |OEn(w1)| results in the two
ensembles

even |OEn(w1)| and odd |OEn(w1)|,

where we define the even-location decimated ensemble even |OEn(w1)| by taking the second largest, fourth
largest etc. singular value, and similarly for odd |OEn(w1)|. The results will often depend on the parity μ of
the underlying order n and we will, throughout this paper, write

n = 2m + μ, μ = 0, 1, m̂ = m + μ, (1.3)

that is,
m = ⌊n/2⌋ , m̂ = ⌈n/2⌉ , μ = ⌈n/2⌉ − ⌊n/2⌋ . (1.4)

Then, generalizing the corresponding result of Bornemann and La Croix [3, Theorem 1] for Gaussian ensem-
bles, the following structure holds.

Theorem 1.1. Let wβ, β = 1, 2, be the weight pairs of the Gauss, symmetric Jacobi or Cauchy case as given in
Table 1. Denoting equality of the joint distribution of two ensembles by d=, there holds

even |OEn(w1)|
d= chUEm(x2μw2), n = 2m + μ. (1.5)

If we recall the superposition representation, see [8, (2.6)],

|UEn(w2)|
d= chUEm̂(w2) ∪ chUEm(x2w2) (1.6)

of the singular values of the corresponding unitary ensemble UEn(w2), with both ensembles on the right
drawn independently, Theorem 1.1 immediately implies the following remarkable relation between the sin-
gular values of OE(w1) and UE(w2).

Corollary 1.2. Let wβ, β = 1, 2, be the weight pairs of the Gauss, symmetric Jacobi or Cauchy case as given in
Table 1. Then, with the ensembles on the right drawn independently, there holds

|UEn(w2)|
d= even |OEn(w1)| ∪ even |OEn+1(w1)|. (1.7)
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The superposition (1.7) bears a striking similarity with a corresponding superposition result for the eigen-
value distributions, see [12, pp. 185–186] or [10, Section 6.6], namely,

UEn(w2)
d= even(OEn(w1) ∪ OEn+1(w1)).

Weproceed as follows. First, in Section 2, we give an overview of superposition and decimation results in
randommatrix theory known from previous studies, so as to properly set the scene for the present study and
also as an opportunity to introduce the circular ensembles. In Section 3, a factorized expression for the joint
density of the singular values is obtained, with the proof of Theorem 1.1 in Section 5 following from this by
integrating out the odd-location singular values. The success of this task is based on the notion of admissible
symmetric weights, which we introduce in Section 4. There, Theorem 4.1 will give a complete classification
of all admissible weights, namely, that they are exactly the Gauss, symmetric Jacobi and Cauchy weights
(this is not to say that Theorem 1.1 would not hold for other ensembles, but to point out that the method
of proof is limited to those cases). In the first subsection of Section 6, some inter-relationships between gap
probabilities are deduced from Theorem 1.1. For n even, these have been obtained in the earlier study [8]
without knowledge of Theorem 1.1. We proceed to provide the necessary working to show that this is still
possible for n odd. The relative complexity serves to further highlight the advantages of a viewpoint based on
singular values. We conclude in Section 7 by presenting a number of new inter-relations between the spectra
of circular ensembles, which follow upon the use of a stereographic projection of the appropriate Cauchy
weights to specify circular ensemble analogues of Theorem 1.1 and its various corollaries.

2 Inter-relations known from previous studies

2.1 Circular ensembles

Central to our theme is the operation of superposition, whereby eigenvalue sequences from two independent
ensembleswith orthogonal symmetry are superimposed, and that of decimation,meaning in the present con-
text that only those eigenvalueswith a particular parity in the ordering are observed. The best knownexample
of these operations involves not eigenvalues on the real line as in (1.1), but rather matrix ensembles with all
eigenvalues on the unit circle in the complex plane. In fact, such ensembles naturally follow from (1.1) with
the Cauchy weight

wβ(x) =
1

(1 + x2)β(n−1)/2+1
. (2.1)

Thus, after making for each eigenvalue the change of variables

eiθ = 1 + ix
1 − ix

, x = tan(θ/2), (2.2)

corresponding to a stereographic mapping from the real line to the unit circle, one obtains the eigenvalue
PDF on the unit circle

∝ |∆(eiθ1 , . . . , eiθn )|β , (2.3)
referred to, in the case β = 1, as the circular orthogonal ensemble COEn and, in the case β = 2, as the circular
unitary ensemble CUEn, see, e.g., [10, Chapter 2].

Let us superimpose two independent COEn ensembles to obtain a new sequence of eigenangles

0 < θ1 < θ2 < ⋅ ⋅ ⋅ < θ2n < 2π,

and denote it by COEn ∪ COEn. It was conjectured by Dyson [6] and proved by Gunson [14] that

alt(COEn ∪ COEn)
d= CUEn , (2.4)

where the alt operation refers to the integration over alternate angles θ1, θ3, . . . , θ2n−1 in the region

θ2j < θ2j+1 < θ2j+2, j = 0, . . . , n − 1,

with θ0 = θ2n − 2π.
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The inter-relation in equation (2.4) between eigenvalue distributions implies an inter-relation between
conditioned gap probabilities. These are the probabilities, denoted by En,β(k; J;wβ), or alternatively by
En,β(k; J;MEn,β(wβ)), that the matrix ensemble MEn,β(wβ) contains exactly k eigenvalues in the interval J.
Then, as a direct combinatorial consequence of (2.4), one has, see [6, 15] and cf. also (2.9), (2.11),

En,2(k; (−θ, θ);CUEn) =
n
∑
j=0

(En,1(2(k − j); (−θ, θ);COEn) + En,1(2(k − j) − 1; (−θ, θ);COEn))

× (En,1(2j; (−θ, θ);COEn) + En,1(2j + 1; (−θ, θ);COEn)). (2.5)

Closely related to the determinantal structure underlying the eigenvalue PDF (2.3) for the CUEn, together
with the fact that this eigenvalue PDF is unchanged by complex conjugation, is the inter-relation, see [17],

|CUEn|
d= O+(n + 1) ∪ O−(n + 1). (2.6)

As the name suggests, here O±(n + 1) refers to the eigenangles of matrices from the classical groups of the
same name, chosen with Haar measure. Eigenangles 0 and π, which appear for purely algebraic reasons,
are ignored and, since orthogonal matrices have real entries, for each eigenangle θ ̸= 0, π, there is another
eigenangle −θ, so that we take the one within the range 0 < θ < π only. The notation | ⋅ | now refers to the dis-
tribution of eigenangles in the range 0 < θ < π union the negative of the eigenangles in the range −π < θ < 0.
Though | ⋅ | has no e�ect on O±(n + 1), this is not the case for the CUEn, where the eigenvalue distribution and
the distribution implied by |CUEn| are very di�erent.

As shown in [8, (2.6)], the analogue of (2.6) for Hermitian matrix ensembles with unitary symmetry
is (1.6). In fact, (2.6) can be deduced from (1.6) with the Cauchyweight w2(x) = (1 + x2)−n upon applying the
change of variables (2.2) corresponding to a stereographic projection. On the right-hand side this requires the
facts that under the change of variable x = tan(θ/2) for each eigenvalue, see [8, (2.24)–(2.28)],

chUEm̂((1 + x2)−n) d= O+(n + 1),

chUEm(x2(1 + x2)−n) d= O−(n + 1),
(2.7)

and on the left-hand side this change of variables simply gives

|UEn((1 + x2)−n)| d= |CUEn|.

2.2 Hermitian ensembles

Forrester and Rains [12] considered analogues of (2.4) for ensembles of Hermitian matrices. In keeping
with the above notation, let OEn(w1) ∪ OEn(w1) denote the superimposing of two sequences of eigenval-
ues, independently drawn from OEn(w1). Suppose the resulting eigenvalues are ordered x1 > x2 > ⋅ ⋅ ⋅ > x2n
and let even(OEn(w1) ∪ OEn(w1)) refer to the distribution of the even-location eigenvalues. We know from
[12, pp. 186–187], see also [10, Section 6.6], that this is identically distributed to an ensemble with unitary
symmetry

even(OEn(w1) ∪ OEn(w1))
d= UEn(w2) (2.8)

for the pairs (w1, w2) of weights given in Table 2 and, furthermore, up to a linear fractional transformation,
these pairs of weights are unique. The inter-relation between ensembles (2.8) has as an immediate combina-
torial consequence the inter-relation between gap probabilities

En,2(k; (0, s);w2) =
2k
∑
j=0
En,1(2k − j; (0, s);w1)(En,1(j; (0, s);w1) + En,1(j − 1; (0, s);w1)). (2.9)

It is also fruitful to consider the superimposed and decimated ensemble even(OEn(f) ∪ OEn+1(f)), thus
involving one ensemble with n eigenvalues and the other with n + 1. It is shown in [12, pp. 185–186], see

Angemeldet | bornemann@tum.de Autorenexemplar
Heruntergeladen am | 30.09.16 12:33



F. Bornemann and P. J. Forrester, Singular values and evenness symmetry | 877

Case w1(x) w2(x) Support

Laguerre e−x/2 e−x (0,∞)
Jacobi (1 − x)(a−1)/2 (1 − x)a (0, 1)

Table 2. Pairs of weights satisfying (2.8); a > −1.

also [10, Section 6.6], that this, again, is identically distributed to an ensemble with unitary symmetry

even(OEn(w1) ∪ OEn+1(w1))
d= UEn(w2), (2.10)

where (w1, w2) is any one of the pairs (w1, w2) of weights given in Table 3 (note that Table 1 gives the subset
of evenweights). As for Table 2 in relation to (2.8), these pairs of weights were shown to be unique up to linear

Case w1(x) w2(x) Support

Gauss e−x2/2 e−x2 (−∞,∞)
Laguerre x(a−1)/2e−x/2 xae−x (0,∞)
Jacobi (1 + x)(a−1)/2(1 − x)(b−1)/2 (1 + x)a(1 − x)b (−1, 1)
Cauchy (1 + x2)−(n+a+1)/2 (1 + x2)−(n+a) (−∞,∞)

Table 3. Pairs of weights satisfying (2.10); a, b > −1.

transformation. An immediate combinatorial consequence for gap probabilities is the inter-relation

En,2(k; Js;w2) =
2k+1
∑
j=0

En,1(2k + 1 − j; Js;w1)(En+1,1(j; Js;w1) + En+1,1(j − 1; Js;w1)), (2.11)

where Js is a single interval either starting at the left boundary of support and finishing at s, or starting at s
and finishing at the right boundary of support.

Remark 2.1. Although it has no direct bearing on the present study, there is a decimation relation relating
OEn(w1) for the weights in Table 3 to a corresponding PDF (1.1) with β = 4, see [12, 16], which further gener-
alises to a decimation relation reducing ensembles with β = 2/(r + 1), r ∈ ℤ+, to ensembles with β = 2(r + 1),
see [9].

3 Joint density of the singular values of orthogonal ensembles
In this section, we assume thatw1 is an evenweight function supported on the interval (−ϖ, ϖ). By symmetry,
we can establish the joint density of the singular values by restricting ourselves to the cone of increasingly
ordered singular values

0 ≤ σ1 ≤ ⋅ ⋅ ⋅ ≤ σn , (3.1)

this way parametrizing |OEn(w1)|. To simplify notation and to avoid case distinctions between odd and even
order n in later parts of the paper, we introduce two further sets of coordinates for this cone. Writing, as
detailed in (1.3) and (1.4), n = 2m + μ and m̂ = m + μ with μ = 0, 1, the coordinates

xj = σ2j−1, j = 1, . . . , m̂, yj = σ2j , j = 1, . . . ,m, (3.2)

satisfy the interlacing property

0 ≤ x1 ≤ y1 ≤ x2 ≤ y2 ≤ ⋅ ⋅ ⋅ ≤ xm̂ ≤ ym̂ ≤ ϖ, (3.3)

with formally adding, if μ = 1, the value ym+1 = ϖ. With x↓ and y↓ denoting the x and y vectors with their
components taken in the reverse order, so x↓ = (xm̂ , xm̂−1, . . . , x1) and y↓ = (ym , ym−1, . . . , y1), we define,
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depending on the parity of n, the coordinates

(t, s) = (y↓, x↓), μ = 0, (t, s) = (x↓, y↓), μ = 1, (3.4)

satisfying the interlacing property

ϖ ≥ t1 ≥ s1 ≥ t2 ≥ s2 ≥ ⋅ ⋅ ⋅ ≥ tm̂ ≥ sm̂ ≥ 0, (3.5)

again formally adding the value sm+1 = 0 if μ = 1. Since the mapping from σ = (σ1, . . . , σn) to either the pair
of coordinates (x, y) or (t, s) is orthogonal, transforming the density between the three sets of coordinates is
simply done by inserting new variable names for old ones. Note that the s variables parametrize the even-
location decimated ensemble even |OEn(w1)| while the t-variables do the same for odd |OEn(w1)|. We call
them the even and odd singular values.

By the evenness of w1, the joint probability density of the singular values is, supported on (3.1),

q(σ1, . . . , σn) = n! ∑
ϵ∈{±1}n

p(ϵ1σ1, . . . , ϵnσn) = cn,1n! ⋅
n
∏
k=1

w(σk) ⋅ D(σ1, . . . , σn)

with
D(σ1, . . . , σn) = ∑

ϵ∈{±1}n
|∆(ϵ1σ1, . . . , ϵnσn)|.

Writing D(x; y) = D(σ1, . . . , σn) in terms of (x, y)-coordinates, Bornemann and La Croix [3, (11)] proved in
two di�erent ways the algebraic fact that

D(x; y) = 2n ⋅ ∆(x21, . . . , x
2
m̂) ⋅ y1 ⋅ ⋅ ⋅ ym∆(y

2
1, . . . , y

2
m).

Hence, we immediately get the following theorem.

Theorem 3.1. Let w1 be an even weight on (−ϖ, ϖ). Then, the joint probability density of |OEn(w1)|, supported
on the cone (3.3), is given by

q(x; y) = cn ⋅ (
m̂
∏
k=1

w1(xk) ⋅ ∆(x21, . . . , x
2
m̂)) ⋅ (

m
∏
k=1

ykw1(yk) ⋅ ∆(y21, . . . , y
2
m)) (3.6)

with cn = cn,1n!2n.

Remark 3.2. Because of the interlacing in (3.3), this factorization does not reveal an independence between
the x and y variables.

4 Admissible symmetric weights
We call a smooth integrable weight w1 : (−ϖ, ϖ) → (0,∞) admissible of order κ and mass

2θ =
ϖ

∫
−ϖ

w1(ξ) dξ (4.1)

if it satisfies the following properties:
(i) w1 is even,
(ii) w1 is normalized, that is, w1(0) = 1,
(iii) w1 satisfies a three-term recurrence of antiderivatives of the form

x

∫ ξ kw1(ξ) dξ = −αkxk−1ϕ(x)w1(x) + βk
x

∫ ξ k−2w1(ξ) dξ, k = 1, 2, . . . , κ, (4.2)

with a smooth function ϕ : (−ϖ, ϖ) → (0,∞) and constants αk , βk such that β1 = 0,
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Case Parameter Order w1(x) ϖ αk βk ϕ(x) θ

Gauss κ < ∞ e−x2/2 ∞ 1 k − 1 1 √
π
2

Jacobi a > −1 κ < ∞ (1 − x2)a 1 1
2a + 1 + k

k − 1
2a + 1 + k

1 − x2
√π Γ(a + 1)
2Γ(a + 3

2 )

Cauchy a > −
1
2 κ < 2a (1 + x2)−a−1 ∞

1
2a + 1 − k

k − 1
2a + 1 − k

1 + x2
√π Γ(a + 1

2 )
2Γ(a + 1)

Table 4. Admissible symmetric weights w1(x).

(iv) w1 vanishes at the boundary, that is,

lim
x→ϖ

xkw1(x) = lim
x→ϖ

xkϕ(x)w1(x) = 0, k = 0, 1, . . . , κ.

Table 4 lists three cases of such admissible weights; by Theorem 4.1 below, these are all possible cases.
By defining α0 = 1, β0 = 0 and

ψ(x) = −
1

ϕ(x)w1(x)

x

∫
0

w1(ξ) dξ, −ϖ < x < ϖ,

the recurrence (iii) extends to the case k = 0 if we replace x−1 by ψ(x). By introducing the vectors

πnν (x) = (

xν

xν+2
...

xν+2n−2

) ∈ ℝn , ν = −1, 0, 1,

with the understanding that, instead of x−1, the first entry of πn−1(x) is in fact ψ(x), we can write the thus
extended recurrence in the compact matrix-vector form

x

∫w1(ξ)πnν (ξ) dξ = Ln,ν ⋅ w̃1(x)πnν−1(x), ν = 0, 1, 2n + ν ≤ κ + 2, (4.3)

w̃1(x) = ϕ(x)w1(x), (4.4)

with a constant lower triangular matrix Ln,ν ∈ ℝn×n having the numbers −αν , −αν+2, . . . , −αν+2n−2 along its
main diagonal. In particular, there holds

det Ln,ν = (−1)nAn,ν , An,ν =
n−1
∏
k=0

α2k+ν . (4.5)

Since within the range of k restricted by the order κ the constants αk and βk given in Table 4 are strictly
positive (with the exception of β1 = 0), we have An,ν > 0. We call w̃1 = ϕw1 the companion weight of w1(x)
and observe that

lim
s→ϖ

w̃1(s)ψ(s) = −θ. (4.6)

In analogy to the results recalled in Section 2.2, we have the following uniqueness result.

Theorem 4.1. Up to a rescaling of x, all possible admissible weights w1(x) are listed in Table 4. Actually, prop-
erties (ii)–(iv) of an admissible weight are su�cient for the conclusion to hold, that is, those properties already
imply the evenness assumption (i).

Proof. Let w1(x) be an admissible weight. Di�erentiating (4.2) yields

(x2 − βk + (k − 1)αkϕ)w1 = −αkx(ϕw1)�, k = 1, 2, . . . , κ. (4.7)

Inserting x = 0 gives
βk = (k − 1)αkϕ(0).
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Therefore, if αk = 0 for some positive integer k, we would get also that βk = 0 and, hence, that
x

∫ ξ kw1(ξ) dξ = 0

in contradiction to w1 being positive. We conclude that

αk ̸= 0, k = 1, 2, . . . , κ.

Inserting k = 1 into (4.7) gives the di�erential equation

(ϕw1)� = −
1
α1
xw1, w1(0) = 1. (4.8)

Inserting this expression for (ϕw1)� into (4.7) and rearranging, we get

x2 − βk
αk

+ (k − 1)ϕ =
x2

α1
, k = 1, 2, . . . , κ.

Solving for ϕ gives

ϕ(x) = 1
k − 1

αk − α1
αkα1

x2 + 1
k − 1

βk
αk

=
1

k − 1
αk − α1
αkα1

x2 + ϕ(0).

Since ϕ(x) is assumed to be independent of k, we get that

ϕ(x) = ϕ(0) + τx2, τ =
α2 − α1
α2α1

=
1

k − 1
αk − α1
αkα1

, k = 2, 3, . . . , κ, (4.9)

which can be solved for αk yielding
αk =

α1α2
α2 + (k − 1)(α1 − α2)

.

Now, we distinguish four cases depending on whether ϕ(0) and τ are zero or not.

Case 1: ϕ(0) = 0 and τ = 0, that is, ϕ ≡ 0. By (4.8) we have xw1 ≡ 0, which contradicts the positivity of w1.

Case 2: ϕ(0) = 0 and τ ̸= 0. By absorbing a rescaling of the αk into ϕ we can arrange for ϕ(x) = ±x2. Now,
solving the di�erential equation (4.8) for w1 yields

w1(x) = cx−2∓1/α1

with some constant c. For w1(0) = 1 to make sense, we would need the exponent to vanish, implying that
already w1 ≡ 1. But such a weight would not satisfy w1(x) → 0 as x → ϖ.

Case 3: ϕ(0) ̸= 0 and τ = 0. By rescaling x we can arrange for α1 = ±1 and ϕ ≡ 1. Now, solving the initial
value problem (4.8) for w1 yields

w1(x) = e∓x
2/2.

From w1(x) → 0 as x → ϖ we get α1 = 1 and ϖ = ∞. This yields the Gauss case of Table 4.

Case 4: ϕ(0) ̸= 0 and α1 ̸= α2. By rescaling x and absorbing a rescaling of the αk into ϕ we can arrange
for ϕ(x) = 1 ± x2. Now, solving the initial value problem (4.8) for w1 yields

w1(x) = (1 ± x2)−1∓1/2α1 .

In the case ϕ(x) = 1 − x2 we set a = −1 + 1/2α1 and get, assuring integrability,

w1(x) = (1 − x2)a , a > −1, ϖ = 1, α1 =
1

2a + 2 ,

which yields the symmetric Jacobi case of Table 4. In the case ϕ(x) = 1 + x2 we set a = 1/2α1 and get, once
more assuring integrability,

w1(x) = (1 + x2)−a−1, a > −
1
2 , ϖ = ∞, α1 =

1
2a ,

which finally yields the Cauchy case of Table 4 (the only case where there is a restriction of the maximum
order κ that has to be checked).
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Remark 4.2. If ϕ(0) ̸= 0, (4.8) and (4.9) imply that the logarithmic derivative of w̃1 = ϕw1, namely,

w̃�
1

w̃1
= −

x
α1ϕ(x)

,

takes the form of a ratio of a linear and a quadratic polynomial. Hence, we immediately see that w̃1 must be
a classicalweight. Because of the commondenominatorϕ in the logarithmic derivatives, the same conclusion
holds for the weights w1 and w2 = w1w̃1. Therefore, we could have finished the proof by checking properties
(ii)–(iv) for each entry of a list of all classical weights.

5 Integrating out the odd and even singular values

5.1 Integrating out the odd singular values

We now prove Theorem 1.1. To begin with, we transform the joint density (3.6) to (s, t) coordinates, that is,

q(s; t) = cn ⋅ gμ(s1, . . . , sm) ⋅ g1−μ(t1, . . . , tm̂)

with functions

gν(z1, . . . , zm) =
m
∏
k=1

zνkw1(zk) ⋅ ∆(z2m , . . . , z21). (5.1)

Likewise, we write g̃ν for the same form of expression using the companion weight w̃1 instead of w1.
Now, Corollary 5.3 below shows that integrating out the odd singular values t subject to the interlac-

ing (3.5) gives the marginal density

qeven(s1, . . . , sm) = cnθμAm̂,1−μ ⋅ gμ(s1, . . . , sm)g̃μ(s1, . . . , sm)

= cnθμAm̂,1−μ ⋅
m
∏
k=1

s2μk w2(sk) ⋅ ∆(s2m , . . . , s21)
2, ϖ ≥ s1 ≥ ⋅ ⋅ ⋅ ≥ sm ≥ 0, (5.2)

of the even singular values, which is defining the associated weight function (cf. the remark in [12, p. 186])

w2(s) = w1(s) ̂w1(s) = ϕ(s)w1(s)2. (5.3)

Since the last expression in (5.2) is easily identified as the joint density of chUEm(x2μw2), see (1.2), we have
finally proved Theorem 1.1.

Remark 5.1. As a side product, the representation (5.2) shows that the normalization constant cchm,μ of the
joint density of OE(x2μw1), if extended by symmetry to be supported on (0,∞)m, is given by

cchm,μ = cn,1Am̂,1−μθμ
2nn!
m! .

The integration is based on the following lemma and its first Corollary 5.3.

Lemma 5.2. Let w̃1 be the companion of the admissible weight w1. Then, there holds

x2

∫
x1

dξ1 ⋅ ⋅ ⋅
xn+1
∫
xn

dξn det(w1(ξ1)πnν (ξ1) ⋅ ⋅ ⋅ w1(ξn)πnν (ξn))

= An,ν det(
w̃1(x1)πnν−1(x1) ⋅ ⋅ ⋅ w̃1(xn+1)πnν−1(xn+1)

1 ⋅ ⋅ ⋅ 1
) , ν = 0, 1.

Here, all integration bounds are within (0, ϖ) and, in the case of a Cauchy weight, 2n + ν ≤ κ + 2.
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Proof. Simplifying the notation to πν(x) = πnν (x), by means of (4.3), (4.4) and (4.5) we calculate

x2

∫
x1

dξ1 ⋅ ⋅ ⋅
xn+1
∫
xn

dξn det(w1(ξ1)πν(ξ1) ⋅ ⋅ ⋅ w1(ξn)πν(ξn))

= det(
x2

∫
x1

w1(ξ1)πν(ξ1)dξ1 ⋅ ⋅ ⋅
xn+1
∫
xn

w1(ξn)πν(ξn)dξn)

= det Ln,ν⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=(−1)nAn,ν

⋅det(w̃1πν−1!!!!
x2
x1 ⋅ ⋅ ⋅ w̃1πν−1!!!!

xn+1
xn )

= An,ν det(
w̃1(x1)πν−1(x1) w̃1πν−1!!!!

x2
x1 ⋅ ⋅ ⋅ w̃1πν−1!!!!

xn+1
xn

1 0 ⋅ ⋅ ⋅ 0
)

= An,ν det(
w̃1(x1)πν−1(x1) w̃1(x2)πν−1(x2) ⋅ ⋅ ⋅ w̃1(xn+1)πν−1(xn+1)

1 1 ⋅ ⋅ ⋅ 1
) .

In the last step, we added the first column to the second, then the second to the third, etc.

Corollary 5.3. Let gν, g̃ν be as in (5.1) and put sm̂ = 0 if μ = 1. Then, there holds

ϖ

∫
s1

dt1
s1

∫
s2

dt2 ⋅ ⋅ ⋅
sm̂−1
∫
sm̂

dtm̂ g1−μ(t1, . . . , tm̂) = θμAm̂,1−μ ⋅ g̃μ(s1, . . . , sm), μ = 0, 1. (5.4)

Here, all integration bounds are within (0, ϖ) and, in the case of a Cauchy weight, n = 2m + μ ≤ κ + 2.

Proof. Using the notation of Lemma 5.2, we first observe that

gμ(z1, . . . , zm) = det(w1(zm)πmμ (zm) ⋅ ⋅ ⋅ w1(z1)πmμ (z1)) (5.5)

and the same for g̃μ with weight w̃1. Now, Lemma 5.2 yields, first using w̃1(s)πm0 (s) → 0 as s → ϖ, that
for μ = 0

ϖ

∫
s1

dt1
s1

∫
s2

dt2 ⋅ ⋅ ⋅
sm−1
∫
sm

dtm det(w1(tm)πm1 (tm) ⋅ ⋅ ⋅ w1(t1)πm1 (t1))

= Am,1 det(
w̃1(sm)πm0 (sm) ⋅ ⋅ ⋅ w̃1(s1)πm0 (s1) 0

1 ⋅ ⋅ ⋅ 1 1
)

= Am,1 det(w̃1(sm)πm0 (sm) ⋅ ⋅ ⋅ w̃1(s1)πm0 (s1)),

and then, using πm+1
−1 (0) = 0 and w̃1(s)ψ(s) → −θ as s → ϖ, that for μ = 1

ϖ

∫
s1

dt1
s1

∫
s2

dt2 ⋅ ⋅ ⋅
sm

∫
0

dtm+1 det(w1(tm+1)πm+1
0 (tm+1) ⋅ ⋅ ⋅ w1(t1)πm+1

0 (t1))

= Am+1,0 ⋅ det(
0 w̃1(sm)πm+1

−1 (sm) ⋅ ⋅ ⋅ w̃1(s1)πm+1
−1 (s1) lims→ϖ w̃1(s)πm+1

−1 (s)
1 1 ⋅ ⋅ ⋅ 1 1

)

= (−1)mAm+1,0 ⋅ det(w̃1(sm)πm+1
−1 (sm) ⋅ ⋅ ⋅ w̃1(s1)πm+1

−1 (s1) lim
s→∞

w̃1(s)πm+1
−1 (s))

= (−1)mAm+1,0 ⋅ det(
w̃1(sm)ψ(sm) ⋅ ⋅ ⋅ w̃1(s1)ψ(s1) −θ
w̃1(sm)πm1 (sm) ⋅ ⋅ ⋅ w̃1(s1)πm1 (s1) 0

)

= θAm+1,0 ⋅ det(w̃1(sm)πm1 (sm) ⋅ ⋅ ⋅ w̃1(s1)πm1 (s1)),

which finishes the proof.
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Remark 5.4. In the Jacobi case, the multidimensional integral (5.4) can be recognized as a variant of the
Dixon–Anderson integral [1, 5], well known in the theory of the Selberg integral, and also in the theory
of β-ensembles in random matrix theory, see [10, Section 4.2]. Specifically, in the statement of the Dixon–
Anderson integral given in [10, (4.15)], cf. [5, (6)], that is,

x0

∫
x1

dξ1 ⋅ ⋅ ⋅
xm̂−1
∫
xm̂

dξm̂ ∆(ξm̂ , . . . , ξ1)
m̂
∏
j=1

m̂
∏
k=0

|ξj − xk|ak−1 =
∏m̂
i=0 Γ(ai)

Γ(∑m̂
i=0 ai)

∏
0≤j<k≤m̂

(xj − xk)aj+ak−1,

valid for x0 > x1 > ⋅ ⋅ ⋅ > xm̂ and aj > 0, j = 0, . . . , m̂, we can reclaim the Jacobi case of (5.4) by the substitu-
tions of variables

x0 = 1, xj = s2j , ξj = t2j , j = 1, . . . , m̂,

and the choices of parameters
a0 = a + 1, aj = 1, j = 1, . . . ,m,

and am+1 = 1/2, sm+1 = 0 if μ = 1.

5.2 Integrating out the even singular values

The following second corollary of Lemma 5.2 will allow us to integrate out the even singular values from the
density q(s; t).

Corollary 5.5. Let gμ, g̃μ be as in (5.1) and put tm+1 = 0 if μ = 0. Then, there holds

t1

∫
t2

ds1 ⋅ ⋅ ⋅
tm

∫
tm+1 dsm gμ(s1, . . . , sm) = Am,μ det(

w̃1(tm̂)πm̂−1
1−μ (tm̂) ⋅ ⋅ ⋅ w̃1(t1)πm̂−1

1−μ (t1)
θ1−μ(tm̂) ⋅ ⋅ ⋅ θ1−μ(t1)

)

for μ = 0, 1 with θ0(x) = 1 and

θ1(x) =
x

∫
0

w1(ξ) dξ.

Here, all integration bounds are within (0, ϖ) and, in the case of a Cauchy weight, n = 2m + μ ≤ κ + 2.

Proof. Using (5.5) and Lemma 5.2 we obtain
t1

∫
t2

ds1 ⋅ ⋅ ⋅
tm

∫
tm+1 dsm gμ(s1, . . . , sm) =

t1

∫
t2

ds1 ⋅ ⋅ ⋅
tm

∫
tm+1 dsm det(w1(sm)πmμ (sm) ⋅ ⋅ ⋅ w1(s1)πmμ (s1))

= Am,μ det(
w̃1(tm+1)πmμ−1(tm+1) ⋅ ⋅ ⋅ w̃1(t1)πmμ−1(t1)

1 ⋅ ⋅ ⋅ 1
) ,

which is already the assertion for μ = 1. For μ = 0 the assertion follows from further calculating

det(w̃1(tm+1)πm−1(tm+1) w̃1(tm)πm−1(tm) ⋅ ⋅ ⋅ w̃1(t1)πm−1(t1)
1 1 ⋅ ⋅ ⋅ 1

)

= det(0 w̃1(tm)πm−1(tm) ⋅ ⋅ ⋅ w̃1(t1)πm−1(t1)
1 1 ⋅ ⋅ ⋅ 1

)

= (−1)m det(w̃1(tm)πm−1(tm) ⋅ ⋅ ⋅ w̃1(t1)πm−1(t1))

= (−1)m det( w̃1(tm)ψ(tm) ⋅ ⋅ ⋅ w̃1(t1)ψ(t1)
w̃1(tm)πm−1

1 (tm) ⋅ ⋅ ⋅ w̃1(t1)πm−1
1 (t1)

)

= det(w̃1(tm)πm−1
1 (tm) ⋅ ⋅ ⋅ w̃1(t1)πm−1

1 (t1)
−w̃1(tm)ψ(tm) ⋅ ⋅ ⋅ −w̃1(t1)ψ(t1)

) ,

which finishes the proof.
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Type w1(x) w̃1(x) θ1(x)
Gauss e−x2/2 e−x2/2 √

π
2 erf( x

√2
)

Jacobi (1 − x2)a (1 − x2)a+1 x ⋅ 2F1(
1
2 , −a;

3
2 ; x

2)

Cauchy (1 + x2)−a−1 (1 + x2)−a x ⋅ 2F1(
1
2 , a + 1; 32 ;−x

2)

Table 5. Companion weights w̃1(x) and integrals θ1(x).

Now, by means of this corollary, the marginal density of the odd singular values is given as

qodd(t1, . . . , tm̂) = cnAm,μ ⋅ g1−μ(tm̂ , . . . , t1) ⋅ det(
w̃1(tm̂)πm̂−1

1−μ (tm̂) ⋅ ⋅ ⋅ w̃1(tm̂)πm̂−1
1−μ (t1)

θ1−μ(tm̂) ⋅ ⋅ ⋅ θ1−μ(t1)
)

= cnAm,μ ⋅ det(
w̃1(tm̂)πm̂−1

1−μ (tm̂) ⋅ ⋅ ⋅ w̃1(tm̂)πm̂−1
1−μ (t1)

ã1−μ(tm̂) ⋅ ⋅ ⋅ ã1−μ(t1)
)

⋅ det(w̃1(tm̂)πm̂−1
1−μ (tm̂) ⋅ ⋅ ⋅ w̃1(tm̂)πm̂−1

1−μ (t1)
θ1−μ(tm̂) ⋅ ⋅ ⋅ θ1−μ(t1)

) , ϖ ≥ t1 ≥ ⋅ ⋅ ⋅ ≥ tm̂ ≥ 0,

with

ãμ(x) = w̃1(x)xμ+2m̂−2, θμ(x) =
{{{{
{{{{
{

1 if μ = 0,
x

∫
0

w1(ξ) dξ if μ = 1.

Note that the two determinantal factors di�er just in their last rows. It is this di�erence that prevents the
expression from becoming a perfect square, which is in marked contrast with the marginal density (5.2) of
the even singular values.

6 Gap probabilities

6.1 A corollary of Theorem 1.1

Theorem 1.1 has an interesting implication in terms of gap probabilities, a notion that we recalled in
Section 2. Specifically, we have the following result.

Theorem 6.1. The gapprobabilities of theGauss, symmetric Jacobi or Cauchy case of Table 1of order n = 2m+ μ
satisfy

En,1(2k + μ − 1; (−s, s);w1) + En,1(2k + μ; (−s, s);w1) = Em,2(k; (0, s2); xμ−1/2w2(x1/2)χx>0).

Proof. The change of variables xk Ü→ x̃k = √xk, applied to the joint density pch of the chiral ensemble
chUE(x2μw2(x)) yields

pch(x1, . . . , xm) dx1 ⋅ ⋅ ⋅ dxm = pm,2(x̃1, . . . , x̃m) dx̃1 ⋅ ⋅ ⋅ dx̃m ,

where pm,2 is the density of UE(xμ−1/2w2(x1/2)χx>0). Hence, lifted to gap probabilities, we obtain

Em,2(k; (0, s); chUE(x2μw2)) = Em,2(k; (0, s2); xμ−1/2w2(x1/2)χx>0), μ = 0, 1. (6.1)

By looking at pairs of consecutive values it is easy to see that the event that exactly k values of the decimated
ensemble even |OEn(w1)|, n = 2m + μ, are contained in (0, s) is given by the union of the events that exactly
2k + μ − 1 or that exactly 2k + μ values of |OEn(w1)| are in that interval. Since these two events are mutually
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exclusive and since the singular values of OEn contained in (0, s) correspond to the eigenvalues in (−s, s), we
thus get from (1.5) and (6.1) the proof of

En,1(2k + μ − 1; (−s, s);w1) + En,1(2k + μ; (−s, s);w1) = Em,2(k; (0, s); chUE(x2μw2))

= Em,2(k; (0, s2); xμ−1/2w2(x1/2)χx>0), (6.2)

which finishes the proof.

For even order (μ = 0), a first proof of this theorem was given by Forrester [8, (1.14)] using generating func-
tions, Pfa�ans and Fredholmdeterminants. For Gaussianweights, Bornemann and La Croix [3, (40)] recently
settled the odd order case by using the more elementary techniques similar to this paper.

6.2 Alternative derivation of Theorem 6.1

A natural question is to enquire if the proof of Theorem 6.1 for μ = 0 given in [8] can be extended to the
case μ = 1. Here, wewill show that the answer is positive, although as is usual formethods based on Pfa�ans
in the study of randommatrix ensembles with β = 1, see, e.g., [10, Section 6.3.3], the number of eigenvalues
being odd adds to the complexity of the calculation.

The first step is to introduce the generating function of the gap probabilities {En,β(k; J;wβ)} according to

En,β(J; ξ;wβ) =
∞

∑
k=0

(1 − ξ)kEn,β(k; J;wβ).

The generating function can be expressed as themultidimensional integral, see, e.g., [10, Proposition 8.1.2],

En,β(J; ξ;wβ) =
ϖ

∫
−ϖ

dx1 ⋅ ⋅ ⋅
ϖ

∫
−ϖ

dxn
n
∏
j=1

(1 − ξχxj∈J) ⋅ pβ(x1, . . . , xn). (6.3)

In terms of generating functions, the assertion of Theorem 6.1 in the case μ = 1 is equivalent to

(
1

(2k)!
∂2k

∂ξ2k
−

1
(2k + 1)!

∂2k+1

∂ξ2k+1
)E2m+1,1((−s, s); ξ;w1(x))

!!!!!!!ξ=1

=
(−1)k
k!

∂k

∂ξ k
Em,2((0, s2); ξ; x1/2w2(x1/2)χx>0)

!!!!!!!ξ=1
(6.4)

being valid for the weights in Table 1. It is this identity that we prove in the rest of the section.
By making use of Pfa�ans, (6.3) for β = 1 and w1(x) even can be expressed as a determinant.

Lemma 6.2. Let Rj(x) be a polynomial of degree j for each j = 0, 1, . . . , and furthermore require that Rj(x) be
even (odd) for j even (odd). For w1(x) even we have

E2m+1,1((−s, s); ξ;w1) ∝ det Y, (6.5)

where
Y = ([a2j−1,2k]j=1,...,m+1, k=1,...,m [b2j−1]j=1,...,m+1) (6.6)

with

aj,k =
1
2

ϖ

∫
−ϖ

dx w1(x)(1 − ξχx∈(−s,s))
ϖ

∫
−ϖ

dy w1(y)(1 − ξχy∈(−s,s))Rj−1(x) sgn(y − x)Rk−1(y),

bj =
1
2

ϖ

∫
−ϖ

w1(x)(1 − ξχx∈(−s,s))Rj−1(x) dx. (6.7)

The proportionality in (6.5) is such that the right-hand side is equal to unity when ξ = 0.
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Proof. Let h(x, y) = −h(y, x) and set

X = (
[h(xj , xk)]j,k=1,...,2m+1 [F(xj)]j=1,...,2m+1
−[F(xk)]k=1,...,2m+1 0

) . (6.8)

It is well known, see, e.g., [10, (6.81)], that with h(x, y) = (1/2) sgn(y − x) and F(x) = 1/2 we have

Pf X = 2−(m+1) ∏
1≤j<k≤2m+1

sgn(xk − xj), (6.9)

where Pf denotes the Pfa�an. Also, it is a simple corollary of the Vandermonde determinant identity that

det[Rk−1(xj)]j,k=1,...,2m+1 ∝ ∏
1≤j<k≤2m+1

(xk − xj). (6.10)

Combining (6.9) and (6.10) shows that

∏
1≤j<k≤2m+1

|xk − xj| ∝ det[Rk−1(xj)]j,k=1,...,2m+1 Pf X. (6.11)

The significance of the decomposition (6.11) for the present purposes is that it implies a Pfa�an for-
mula for the generating function E2m+1,1. Specifically, substituting the definition (1.1) of the joint density
p1(x1, . . . , x2m+1) in (6.3) with β = 1 and then substituting (6.11) we have

E2m+1,1((−s, s); ξ;w1) ∝
ϖ

∫
−ϖ

dx1 ⋅ ⋅ ⋅
ϖ

∫
−ϖ

dx2m+1

2m+1
∏
l=1

(1 − ξχxl∈(−s,s))w1(xl)det[Rk−1(xj)]j,k=1,...,2m+1 Pf X

∝ Pf ([aj,k]j,k=1,...,2m+1 [bj]j=1,...,2m+1
−[bk]k=1,...,2m+1 0

) , (6.12)

where aj,k, bj are given by (6.7), with the final line being a well-known identity in random matrix theory,
see [4] or [10, equation (6.84)].

Finally, to obtain from this the determinant form (6.5), note that since (1 − ξχx∈(−s,s))w1(x) is even in x
and Rj(x) is even (odd) for j even (odd), we have that aj,k = 0 when j, k have the same parity and bj = 0 for j
even. Thus, the nonzero entries in the Pfa�an (6.12) form a checkerboard pattern. Taking into consideration
that aj,k is antisymmetric in the indices j, k, rearranging the rows reduces the right-hand side of (6.12) to

Pf (0m+1 Y
−Y⊤ 0m+1

) ,

and this in turn is equal to det Y.

At this stage the polynomials {Rj(x)}, apart from their degree and parity, are arbitrary – a judicious choice
takes us closer to establishing (6.4). For this, for a givenw2(x) in Table 1, introduce the family of orthonormal
polynomials {pj(x)}j=0,...,n such that

ϖ

∫
−ϖ

w2(x)pj(x)pk(x) dx = δjk . (6.13)

In terms of these polynomials, and the pairs of weights as implied by Table 1, choose

R0(x) = 1, R2j−1(x) = p2j−1(x), R2j(x) = −
1

w1(x)
d
dx(

w2(x)
w1(x)

p2j−1(x)), (6.14)

where j = 1, 2, . . . . The latter expression is even and a polynomial of degree j since

1
w1(x)

d
dx

w2(x)
w1(x)

= −
x
α1
, w2(x)

w1(x)2
= ϕ(x) = even polynomial of degree 2,
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following from (4.8) and (5.3), which are constitutive for Table 1. We then have, for j, k = 1, 2 . . . ,

b1 =
1
2

ϖ

∫
−ϖ

w1(x)(1 − ξχx∈(−s,s)) dx, b2j+1 = ξ w2(s)
w1(s)

p2j−1(s), (6.15)

and

a1,2k =
1
2

ϖ

∫
−ϖ

dx w1(x)(1 − ξχx∈(−s,s))
ϖ

∫
−ϖ

dy w1(y)(1 − ξχy∈(−s,s)) sgn(y − x)p2k−1(y),

as well as

a2j+1,2k = 2ξ w2(s)
w1(s)

p2j−1(s)
ϖ

∫
s

w1(y)p2k−1(y) dy −
ϖ

∫
−ϖ

w2(y)(1 − ξχy∈(−s,s))2p2j−1(y)p2k−1(y) dy. (6.16)

One immediate consequence of this choice is that it allows for a simple determination of the proportion-
ality, 1/θ say, in (6.5). Thus, with ξ = 0 we see that b2j+1 = 0 and a2j+1,2k = −δj,k, where to obtain the latter
use has been made of (6.13). Consequently, cf. (4.1),

θ = b1|ξ=0 =
1
2

ϖ

∫
−ϖ

w1(x) dx. (6.17)

Let C ∈ O(m) be a real orthogonalmatrix and define a set {q2j−1(x)}j=1,...,m of polynomials by

(

q1(x)
q3(x)

...
q2m−1(x)

) = C(

p1(x)
p3(x)

...
p2m−1(x)

) . (6.18)

If Ỹ is defined as for Y but with each occurrence of p2j−1(x) replaced by q2j−1(x), we get

(
1

C
) Y (

C⊤

1
) = Ỹ , det Ỹ = det Y, (6.19)

where the latter follows from |det C| = 1. This allows us to make the same replacement in (6.14) and thus in
(6.15) and (6.16) without having an e�ect on the representation (6.5) of the generating function. That this
freedom leads to simplifications can be seen from the fact that {q2j−1(x)} remains an orthonormal set with
respect to the inner product implied by (6.13), that is,

ϖ

∫
−ϖ

w2(x)q2j−1(x)q2k−1(x) dx = δjk , (6.20)

but can also be chosen to have an additional orthogonality as in the following lemma.

Lemma 6.3. Define the projection kernel

K(x, y) = (w2(x)w2(y))1/2
m
∑
k=1

p2k−1(x)p2k−1(y) (6.21)

together with the associated integral operator

Kf(x) =
s

∫
−s

K(x, y)f(y) dy, 0 < s < ϖ. (6.22)

This integral operator has eigenfunctions {q2j−1(x)}j=1,...,m with the structure (6.18) for some real orthogonal
matrix C and furthermore

s

∫
−s

w2(x)q2j−1(x)q2k−1(x) dx = ν2j−1(s)δjk , (6.23)

where 0 < ν2j−1(s) < 1 are the eigenvalues of K.
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This functional analytic result is essentially due to Gaudin [13], see also [10, p. 410]. The determinant of Ỹ
can be simplified by applying the elementary column operations of replacing column k for k = 1, . . . , n by
column k minus

2
ϖ

∫
s

w1(x)q2k−1(x) dx

times column n + 1. It is immediate that the entries in rows 2, . . . , n + 1 and columns 1, . . . , n are then given
by

ã2j+1,2k = −
ϖ

∫
−ϖ

w2(y)(1 − ξχy∈(−s,s))2q2j−1(y)q2k−1(y) dy

= −
ϖ

∫
−ϖ

w2(y)q2j−1(y)q2k−1(y) dy + (2ξ − ξ2)
s

∫
−s

w2(y)q2j−1(y)q2k−1(y) dy

= −δjk + (2ξ − ξ2)ν2j−1δjk

= −δjk + (1 − (ξ − 1)2)ν2j−1δjk , (6.24)

where we have used (6.13) and (6.23) to obtain the last line. The entries in row 1, column 1, . . . , n, after first
simplifying the expression for a1,2k in (6.15) by noting that the integral over y can be rewritten according to

1
2

ϖ

∫
−ϖ

dy w1(y)(1 − ξχy∈(−s,s)) sgn(y − x)p2k−1(y)

= ξχx∈(−s,s)
ϖ

∫
s

w1(t)q2k−1(t) dt + (1 − ξχx∈(−s,s))
ϖ

∫
x

w1(t)q2k−1(t) dt,

now read

ã1,2k = ξ(1 − ξ)
ϖ

∫
s

w1(t)q2k−1(t) dt
s

∫
−s

w1(x) dx +
ϖ

∫
−ϖ

w1(x)(1 − ξχx∈(−s,s))2 dx
ϖ

∫
x

w1(t)q2k−1(t) dt

−
ϖ

∫
s

w1(t)q2k−1(t) dt
ϖ

∫
−ϖ

w1(x)(1 − ξχx∈(−s,s)) dx

=
ϖ

∫
−ϖ

w1(x) dx
ϖ

∫
x

w1(t)q2k−1(t) dt − (1 − (ξ − 1)2)
s

∫
−s

w1(x) dx
s

∫
x

w1(t)q2k−1(t) dt. (6.25)

The entries in the final column are unchanged by this process, and thus still have entries b2j−1 as specified
in (6.15), with p2j−1(x) replaced by q2j−1(x).

To summarize, we have shown with (6.5), (6.17), (6.19), (6.24) and (6.25) that

E2m+1,1((−s, s); ξ;w1) =
1
θ
det Ỹ

=
!!!!!!!!!

c⊤1 + c⊤2 (1 − (ξ − 1)2) 1 + ξã
−I + (1 − (ξ − 1)2)D ξc3

!!!!!!!!!

= det(I − (1 − (ξ − 1)2D) + ξ
!!!!!!!!!

c⊤1 + c⊤2 (1 − (ξ − 1)2) ã
−I + (1 − (ξ − 1)2)D c3

!!!!!!!!!
with D = diag(ν1(s), ν3(s), . . . , ν2m−1(s)), ã a scalar and c1, c2, c3 some column vectors with m entries that
depend on s but not on ξ . The structure of the last formula is

E2m+1,1((−s, s); ξ;w1) = E(1 − (ξ − 1)2) + ξF(1 − (ξ − 1)2), (6.26)

where F(ξ) is a polynomial and

E(ξ) =
m
∏
j=1

(1 − ξν2j−1(s)). (6.27)
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Now, (6.26) and (6.27) are immediately amenable to the following simple lemma,which follows from a direct
computation for the monomial basis {(1 − ξ)j}j=0,1,2,....

Lemma 6.4. Let G(ξ) be a polynomial. Then, for k = 0, 1, 2, . . . , there holds

(
1

(2k)!
∂2k

∂ξ2k
−

1
(2k + 1)!

∂2k+1

∂ξ2k+1
)G(1 − (ξ − 1)2)

!!!!!!!ξ=1
=

(−1)k
k!

∂k

∂ξ k
G(ξ)

!!!!!!!ξ=1
,

(
1

(2k)!
∂2k

∂ξ2k
−

1
(2k + 1)!

∂2k+1

∂ξ2k+1
)ξG(1 − (ξ − 1)2)

!!!!!!!ξ=1
= 0.

An application of this lemma to (6.26) and (6.27) gives

(
1

(2k)!
∂2k

∂ξ2k
−

1
(2k + 1)!

∂2k+1

∂ξ2k+1
)E2m+1,1((−s, s); ξ;w1) =

(−1)k
k!

∂k

∂ξ k
E(ξ),

which finally proves (6.4) by thewell-known and readily established fact, see, e.g., [10, Exercises 9.6, 3], that

E(ξ) = Em,2((0, s2); ξ; x1/2w2(x1/2)χx>0).

7 Circular ensembles
It was remarked in the paragraph including (2.7) that applying a stereographic projection to the eigenvalues
in the appropriate Cauchy case of (1.6) gives (2.6). This transformation induces a natural definition of the dec-
imated ensembles even |COEn| and odd |COEn|. Now, the analogue of Theorem 1.1 allows us to characterize
not only the ensemble even |COEn| but also odd |COEn|.

Theorem 7.1. Let μ be defined as in (1.3), (1.4) and, with sgn(x) = + for x > 0 and sgn(x) = − for x < 0, define
ν = sgn(1/2 − μ). Then, the circular ensembles satisfy the inter-relations

even |COEn|
d= Oν(n + 1), (7.1)

odd |COEn|
d= O−ν(n + 1), (7.2)

|CUEn|
d= even |COEn| ∪ odd |COEn|, (7.3)

where, in the last equation, both ensembles on the right are to be chosen independently.

Remark 7.2. The last inter-relation should be contrasted with the trivial relation

|COEn|
d= even |COEn| ∪ odd |COEn|

when both occurrences of COEn on the right would represent one and the same ensemble instead of being
independent.

Proof. The application of Theorem 1.1 to the Cauchy ensembles with weight (2.1) and a subsequent trans-
formation to the circular ensembles by a stereographic projection of the eigenvalues transforms, by recalling
(2.7), the inter-relation (1.5) into the first assertion (7.1).

Next, we repeat these steps with the Cauchy weight

w1(x) =
1

(1 + x2)(n−1+a)/2+1
, a > −1, (7.4)

which transforms by the stereographic projection into the circular Jacobi ensemble with parameter a,
see [10, Section 3.9]. Though the resulting PDF becomes singular in the limit a → −1+, we know from
working in the theory of the Selberg integral, see, e.g., [10, Proposition 4.1.3], that the limit e�ectively
reduces the number of eigenvalues from n to n − 1, by the mechanism of freezing one eigenvalue, taken to be
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at θ = π. This decouples but otherwise leaves the joint distribution of the remaining eigenvalues unchanged.
Noting that the freezing of an eigenvalue at θ = π also has the consequence of replacing the even operation
by the odd operation, and after applying analogous reasoning on the right-hand side of (1.5), we deduce the
second assertion (7.2).

Finally, by recalling (2.6), the last assertion (7.3) follows from (7.1) and (7.2). Alternatively, (7.3) could
also have been deduced from (1.7) by the choice of the appropriate Cauchy weight, and an appropriate inter-
pretation of the weight in the second term as just discussed.

Remark 7.3. Interestingly, the pathway to (7.2) via the limit a → −1+ in (1.5) with weight (7.4) can also be
followed in the appropriate Laguerre and Jacobi cases of (2.10) to deduce (2.8).

Analogous to the deduction of Theorem 6.1 from Theorem 1.1, as a corollary of Theorem 7.1, we get the
following result.

Theorem 7.4. With μ as in (1.3), (1.4) and ν = sgn(1/2 − μ), we have the gap probability inter-relations

En,1(2k − 1 + μ; (−θ, θ);COEn) + En,1(2k + μ; (−θ, θ);COEn) = Em,2(k; (0, θ);O+ν(n + 1)),
En,1(2k − μ; (−θ, θ);COEn) + En,1(2k + 1 − μ; (−θ, θ);COEn) = Em̂,2(k; (0, θ);O−ν(n + 1)).

In the case n even, these inter-relations have previously been noted in [8, (3.25)], where it is remarked that it
allows the gap probabilities of COEn to be expressed as simple linear combinations of the gap probabilities of
O±(n + 1). One advantage of such expressions is that the ensembles O±(n + 1) are determinantal point pro-
cesses, see, e.g., [10, Chapter 5], allowing the corresponding gap probabilities to be expressed as Fredholm
determinants, which enjoy exponentially fast numerical approximation, and thus allowing for their e�cient
high precision computation, see [2]. Another advantage is that the gap probabilities for determinantal point
processes can be shown to obey a local limit theorem in an appropriate asymptotic regime. The inter-relations
then allow for the deduction of such asymptotic behaviour for the sum of neighbouring gap probabilities in
COEn, for which no direct methods are known, see [11].

The gap probability inter-relation implied by (7.3) is exactly (2.5), even though the matrix ensemble
inter-relation (2.4) used in its previous derivation is distinct from (7.3). This is a concrete example of the
general fact that the family of gap-probability inter-relations specified by Theorem 6.1 or by Theorem 7.4 do
not contain enough information to determine a particular matrix ensemble inter-relation, even though they
are suggestive.
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